musique contemporaine

Ircam - articles scientifiques notice originale

Computation of convergence radius and error bounds of Volterra series for single input systems with a polynomial nonlinearity

Type

text
 

Genre(s)

article
 

Forme(s)

document numérique
 

Accès sur site

  • Version numérique intégrale de l'article
 

Cette ressource est disponible chez l'organisme suivant : Ircam - Centre Pompidou

Identification

Titre

Computation of convergence radius and error bounds of Volterra series for single input systems with a polynomial nonlinearity
 

Nom(s)

Helie, Thomas (auteur)
 
Laroche, Béatrice (auteur)
 

Publication

Shanghai, Chine , 2009
 

Description

Résumé

In this paper, the Volterra series decomposition of a class of time invariant system, polynomial in the state and affine in the input, with an exponentially stable linear part is analyzed. A formal recursive expression of Volterra kernels of the input-to-state system is derived and the singular inversion theorem is used to prove the non-local-in-time convergence of the Volterra series to a trajectory of the system, to provide an easily computable value for the radius of convergence and to compute a guaranteed error bound for the truncated series. These results are available for infinite norms (Bounded Input Bounded Output results) and also for specific weighted norms adapted to some so-called ``fading memory systems'' (exponentially decreasing input-output results). The method is illustrated on two examples including a Duffing's Oscillator.
 

Note(s)

Contribution au colloque ou congrès : IEEE Conference on Decision and Control
 

Localisation

Envoyer la notice

Bookmark and Share 
 

Identifiant OAI

 

Date de la notice

2010-02-25 01:00:00
 

Identifiant portail

 

Contact