musique contemporaine

Ircam - articles scientifiques notice originale

Computation of convergence radius and error bounds of Volterra series for multiple input systems with an analytic nonlinearity in state

Type

text
 

Genre(s)

article
 

Forme(s)

document numérique
 

Accès sur site

  • Version numérique intégrale de l'article
 

Cette ressource est disponible chez l'organisme suivant : Ircam - Centre Pompidou

Identification

Titre

Computation of convergence radius and error bounds of Volterra series for multiple input systems with an analytic nonlinearity in state
 

Nom(s)

Helie, Thomas (auteur)
 
Laroche, Béatrice (auteur)
 

Publication

Atlanta, United States , 2010
 

Description

Résumé

In this paper, the Volterra series decomposition of a class of multiple input time-invariant systems, analytic in state and affine in inputs is addressed. Computable bounds for the non-local-in-time convergence of the Volterra series to a trajectory of the system are given for infinite norms (Bounded Input Bounded Output results) and for specific weighted norms adapted to some ``fading memory systems'' (exponentially decreasing input-output results). This work extends results previously obtained for polynomial single input systems. Besides the increase in combinatorial complexity, a major difference with the single input case is that inputs may play different roles in the system behavior. Two types of inputs (called ``principal'' and ``auxiliary'') are distinguished in the convergence process to improve the accuracy of the bounds. The method is illustrated on the example of a frequency-modulated Duffing's oscillator.
 

Note(s)

Contribution au colloque ou congrès : IEEE Conference on Decision and Control
 

Localisation

Envoyer la notice

Bookmark and Share 
 

Identifiant OAI

 

Date de la notice

2010-09-07 02:00:00
 

Identifiant portail

 

Contact