musique contemporaine

Ircam - articles scientifiques notice originale

Time modeling in Hidden Markov Models

Type

text
 

Genre(s)

mémoire ou thèse
 

Forme(s)

document numérique
 

Accès sur site

  • Version numérique intégrale de l'article
 

Cette ressource est disponible chez l'organisme suivant : Ircam - Centre Pompidou

Identification

Titre

Time modeling in Hidden Markov Models
 

Nom(s)

Kaprykowsky, Hagen (auteur)
 

Publication

Universität Karlsruhe, Allemagne , 2004
 

Description

Sujet(s)

score following   temporal modeling   musical modeling   Hidden Markov Models   probabilistic modeling
 

Résumé

A classical problem with the HMM approach lies in its temporal modeling. Perhaps the major weakness of conventional HMMs is the modeling of state duration. In this report a connection between implicit state duration modeling in HMMs, explicit state duration modeling, and time invariant linear systems will be given. The work takes place in the context of the Ircam score follower while most approaches are given in speech recognition. The maximum state duration measured as the number of observations in speech recognition is typically 32 frames of 10 ms. The maximum state duration of a note is typically much higher. This has to be taken in account in the temporal modeling of the HMM of the score follower.
 

Localisation

Envoyer la notice

Bookmark and Share 
 

Identifiant OAI

 

Date de la notice

2010-02-25 01:00:00
 

Identifiant portail

 

Contact