musique contemporaine

Ircam - articles scientifiques notice originale

On the singularities of fractional differential systems, using a mathematical limiting process based on physical grounds

Type

text
 

Genre(s)

article
 

Forme(s)

document numérique
 

Accès sur site

  • Version numérique intégrale de l'article
 

Cette ressource est disponible chez l'organisme suivant : Ircam - Centre Pompidou

Identification

Titre

On the singularities of fractional differential systems, using a mathematical limiting process based on physical grounds
 

Nom(s)

Mignot, Remi (auteur)
 
Helie, Thomas (auteur)
 
Matignon, Denis (auteur)
 

Publication

2009
 

Description

Sujet(s)

Boundary value problem   Generalized linear systems   Integral representations   Laplace transforms   Singularities   Heat equation   Scattering problems.
 

Résumé

Fractional systems are associated to irrational transfer functions for which non unique analytic continuations are available (from some right-half Laplace plane to a maximal domain). They involve continuous sets of singularities, namely cuts, which link fixed branching points with an arbitrary path. In this paper, an academic example of the 1D heat equation and a realistic model of an acoustic pipe on bounded domains are considered. Both involve a transfer function with a unique analytic continuation and singularities of pole type. The set of singularities degenerates into uniquely defined cuts, when the length of the physical domain becomes infinite. From a mathematical point of view, both the convergence in Hardy spaces of some right-half complex plane and the pointwise convergence are studied and proved.
 

Note(s)

Article paru dans : Physica Scripta n°136
 

Localisation

Envoyer la notice

Bookmark and Share 
 

Identifiant OAI

 

Date de la notice

2012-03-15 01:00:00
 

Identifiant portail

 

Contact