musique contemporaine

Ircam - articles scientifiques notice originale

Descriptor-based Sound Texture Sampling

Type

text
 

Genre(s)

article
 

Forme(s)

document numérique
 

Cette ressource est disponible chez l'organisme suivant : Ircam - Centre Pompidou

Identification

Titre

Descriptor-based Sound Texture Sampling
 

Nom(s)

Schwarz, Diemo (auteur)
 
Schnell, Norbert (auteur)
 

Publication

Barcelona, Spain , 2010
 

Description

Sujet(s)

sound textures   statistic modeling   Gaussian mixture models   audio descriptors   corpus-based synthesis   concatenative synthesis   content-based retrieval   databases
 

Résumé

Existing methods for sound texture synthesis are often concerned with the extension of a given recording, while keeping its overall properties and avoiding artefacts. However, they generally lack controllability of the resulting sound texture. After a review and classification of existing approaches, we propose two methods of statistical modeling of the audio descriptors of texture recordings using histograms and Gaussian mixture models. The models can be interpolated to steer the evolution of the sound texture between different target recordings (e.g. from light to heavy rain). Target descriptor values are stochastically drawn from the statistic models by inverse transform sampling to control corpus-based concatenative synthesis for the final sound generation, that can also be controlled interactively by navigation through the descriptor space. To better cover the target descriptor space, we expand the corpus by automatically generating variants of the source sounds with transformations applied, and storing only the resulting descriptors and the transformation parameters in the corpus.
 

Note(s)

Contribution au colloque ou congrès : Sound and Music Computing (SMC)
 

Localisation

Envoyer la notice

Bookmark and Share 
 

Identifiant OAI

 

Date de la notice

2010-08-03 02:00:00
 

Identifiant portail

 

Contact